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Phase of the Riemann ¢ function and the inverted harmonic oscillator
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The Argand diagram is used to display some characteristics of the Riemann { function. The
zeros of the ¢ function on the complex plane give rise to an infinite sequence of closed loops, all
passing through the origin of the diagram. The behavior of the phase of the ¢ function on and off
the line of zeros is studied. Up to some distance from the line of the complex zeros, the phase angle
is shown to still retain their memory. The Argand plots also lead to an analogy with the scattering
amplitude and an approximate rule for the location of the zeros. The smooth phase of the ¢ function
along the line of the zeros is related to the quantum density of states of an inverted oscillator.

PACS number(s): 05.45.+b, 03.65.Nk, 02.90.+p

I. INTRODUCTION

The Riemann zeta function ¢(s) of the complex vari-
able s = o + it, defined by the equation (for o > 0)

ORI &

has an infinite number of zeros on the half-line o = 3 [1].
These zeros are of great interest to mathematicians from
the number theoretic point of view [2,3], and to physicists
interested in quantum chaos and the periodic orbit theory
[4-6]. Along this line, as a function of ¢, every time ((s)
changes sign, a discontinuous jump by 7 in the phase an-
gle is introduced. Otherwise the phase angle is a smooth
function of t. The smooth part of the phase angle itself
is very interesting, since it counts the number of zeros on
the 1/2 line fairly accurately. In this paper we bring out
some of the interesting properties of {(s) by displaying it
on an Argand diagram, where Re((s) (along the = axis),
is plotted against Im ((s) (y axis). For o = 1/2, the plot
yields an infinite sequence of closed loops, one for every
zero of the ¢ function, all going through the origin. We
show that as one moves somewhat away from the o = 1/2
line, the phase angle still has sharp drops at those val-
ues of ¢ which have zeros on the 1/2 axis. However, this
“memory” of the zeros begins to fade as one moves along
the real axis. We also point out the similarity in the Ar-
gand diagrams for {(1/2 + 4t) and the resonant quantum
scattering amplitude, and this analogy, although flawed,
leads directly to an approximate quantization condition
for the location of the zeros [7,8]. We demonstrate that
for o = 1/2, the smooth part of the phase angle of {(s)
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is closely related to the phase shift of an inverted half
harmonic oscillator.

II. THE PHASE ANGLE AND THE ARGAND
DIAGRAM

We start by giving some standard results for the Rie-
mann zeta function ¢{(s). Using the fundamental func-
tional relationship between ((s) and ((1 — s), it is easy
to show that [2]

¢ —it) = (m)" ig—t}; ¢(3 +1t), (2)

where I'(z) denotes the « function of the argument 2. We
may further write

C(4 +it) = Z(t) expl-if (1)), (3)

where Z(t) is real and 6(t) is the phase angle, with the
convention that (0) = n. Using Egs. (1) and (2) it
follows that

exp[2i0(t)] = exp(—itlnm) ?—E—%—E——:ﬁ:—;. 4)

The phase 6, as defined above, is smooth in the sense
that it does not include the jumps by m due to the zeros
of Z(t). Nevertheless, the number of zeros between 0 and
t on the o = 1/2 line is counted fairly accurately by 6(t),
as will become clear from the Argand diagram. Note that

o)t 1 1 it
T gt 27rIm|:lnI‘ (4 + 2)

—InT (i—g)] +1, (5)

which satisfies the condition that (0) = w. The density
of zeros is given by

486 ©1995 The American Physical Society
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-1 0 1 2 3 4 -0.5 0 0.5 1 1.5 for increasing t and fixed o. (a) ((1/2 + it)
Re[¢(5 + i t)] Re[¢(5 + i t)] in the range ¢ = 9 — 50. The lower limit for
t is chosen so as not to miss the Gram point
flanking the lowest zero at t = 14.13. (b)
I T T T T T T T T ¢(1/2 + t) for t = 280 — 300, showing the
2 i ] L ] two loops without the corresponding Gram
r O 1 ] points. (c) (0.6 + ¢t) for t = 9 — 50 to show
r /s\ 1 L . the defocusing at the origin. (d) ¢(1 + 4t) for
S 1 r © S L @ | t =9 — 50. Note the pronounced shift of the
B i \\ ] - + . diagram away from the origin in this case.
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where the digamma function is defined as ¥(z) =
['(2)/T(z). From the above, the asymptotic expression
for 6(t) may be obtained immediately by making asymp-
totic expansion of the I' functions. We denote this by
0(t) and it is given by

%é(t): (%)m(%) - (%)+g+ﬁ+m
(7

To bring out some characteristics of the function
¢(1/2 + it), we plot its Argand diagram in Fig. 1(a) in
the range ¢t = 9 to t = 50. This shows a sequence of
closed loops, one for every zero of the ¢ function. At a
zero of ((1/2 + it), both its real and imaginary parts are
zero at the same value of ¢, and therefore every loop con-
verges at the origin. The intercepts on the real axis are

Re[¢(1. + i t)]

the so-called “Gram points,” where only the imaginary
part of {(s) is zero, due to the phase angle 6(t) = nn.
With infrequent exceptions, there is one Gram point be-
tween two consecutive zeros of the ¢ function. The first
two exceptions to this rule occur for the 126th and the
134th zeros at t = 282.455 and 295.584, respectively [2].
The Argand diagram in Fig. 1(b) clearly shows that for
these cases, the loop structure still persists, even though
the Gram points are missing. In Figs. 1(c) and 1(d)
Argand diagrams are drawn away from the 1/2 axis, for
o = 0.6 and o = 1, respectively. These clearly show the
defocusing at the origin due to the absence of the zeros
in the ¢ function. Moreover, the number of intercepts
along the real axis in the Argand diagrams now show a
large increase compared to the o = 1/2 case, whereas the
intercepts on the imaginary axis are few or nonexistent.
This is a reflection of the change in the behavior of the
phase 6(t) away from the o = 1/2 line. In Fig. 2(a), the
phase angle 6(t), as determined by Eq. (5), is plotted
as a function of ¢ on the 1/2 axis. This phase angle is
a smooth function of ¢t because the jumps by 7 at every



488 R. K. BHADURI, AVINASH KHARE, AND J. LAW 52

T T T T T T T T T T

30 [T T T T T

20

o(t)

O 1 TSI S T S Y N S 11 |

T T T T L L L L L L L

BRSNS N N Y Y TS W SO G S T SO S Y T IS T T |

t

FIG. 2. (a) The smooth phase angle of ((1/2 + it), as de-
fined by Eq. (5), is plotted as a function of ¢t = 0 — 50. (b)
The discontinuities of n in the phase angle 6(t) at o = 0.5 at
the position of the zeros are shown. The total phase is given
by the superposition of (b) on (a).

zero (due to the change in the sign of the { function)
is not registered by it. These discontinuities are shown
separately in Fig. 2(b). The smooth phase keeps increas-
ing monotonically with ¢, since the curve in the complex
plane passes through the origin at every zero . The be-
havior of the phase angle 0(t) away from the 1/2 axis is
shown in Fig. 3. Note that for o # 1/2, {(s) and {(1—s)
are not complex conjugate of each other. Therefore Eq.
(4) no longer holds in such a situation. There is no mono-
tonic increase in the phase angle now, although the zigzag
character of 6(t) reflects that some memory of the zeros
is still retained. Indeed, Fig. 3(a) shows that the phases
at s = 0.6 + it (solid curve) and s = 1.0 + ¢t (dotted
curve) as a function of ¢ drop precipitously precisely at
those values of ¢ for which there is a zero on the 1/2 axis.
These drops, though still there, are not so pronounced
for s = 1.6+ ¢, and are smoothed out for s = 3+t [solid
and dotted curves, respectively, Fig. 3(b)]. Nevertheless,
the “chaotic” characteristic of the phase angle off the 1/2
axis is still due to the zeros on the 1/2 axis. This is ap-
parent in Fig. 4, where the derivative df/dt is plotted as
a function of ¢ for ¢ = 0.6,1 [Fig. 4(a)] and 0 = 1.6,3.0
[Fig. 4(b)]. Whereas the position of all the ten zeros of
¢(s) in the range t = 0 — 50 may be read off from the
curves for ¢ = 0.6, 1, and 1.6, the undulations of the
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FIG. 3. The exact phase angle of {(o + it) is plotted as a
function of t = 0 — 50 for (a) o = 0.6 (solid line) and o = 1.0
(dotted line). (b) The same as above, for o = 1.6 (solid line)
and o = 3.0 (dotted line). Note that the vertical scale is
expanded in (b).

slope are gentler for ¢ = 3 , with concomitant loss of
information. Note that there is a spurious dip near t = 0
in all the curves in Fig. 4. It must be mentioned that
the phase angle for s = 1 + it is well studied in relation
to the quantum scattering phase shift of a particle on a
surface of constant negative curvature [9-11].

Finally, in Figs. 5(a) and 5(b), the Argand diagrams
of the ( function are drawn for a much larger range of
t, from 1 to 500, on and off the 1/2 axis. Note that the
scale for 0 = 1 is expanded compared to that for o =
1/2. Borrowing from the terminology of the motion of a
particle in phase space, it is as if there is an “attractor”
at the origin for o = 1/2 [Fig. 5(a)], which is absent from
the more disorderly tracks of Fig. 5(b), which is drawn
along the 0 = 1 line. The latter figure also shows that
the real part of the ¢ function is always positive for o = 1
for this entire range of ¢.

III. ANALOGY WITH THE SCATTERING
AMPLITUDE

The loop structure of the ¢ function at o = 1/2, with
some near-circular shapes, is reminiscent of the Argand
plots for the scattering amplitudes of different partial
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FIG. 4. The derivative of the phase angle of {(o + it) from
Fig. 3 is plotted as a function of t = 0 — 50 for (a) o = 0.6
(solid curve) and o = 1.0 (dotted curve); (b) o = 1.6 (solid
curve) and o = 3.0 (dotted curve). The verical scale in (b) is
again expanded for clarity.

waves in the analysis of resonances, for example, in pion-
nucleon scattering [12]. Consider the partial wave am-
plitude f;(k), defined in terms of the partial wave phase-
shift é;(k) and the inelasticity parameter m(k),

fi(k) = [mexp(2¢6;) — 1]/2ik. (8)

Here [ refers to the angular momentum and k the wave
number. Note that Im fi(k) is never negative, since the
inelasticity parameter 7 is always less than one. One
generally plots an Argand diagram with 2k Im f;(k) along
the z axis for various values of k. For the case of no in-
elasticity (m = 1) and a single resonance, the Argand
diagram is a perfect circle with unit radius, with the cen-
ter on the imaginary axis at 1. By comparing this with
Fig. 1(a) at 0 = 1/2 we see that the real and the imag-
inary parts are interchanged in the latter, but otherwise
there is a strong similarity, with many of the loops hav-
ing inelasticity. This analogy is flawed, however, since
Re((1/2 + it) does become negative in small islands of t.
Nevertheless, if these islands are ignored, then the phase
shift §; may be identified with the phase angle 6 + 7 /2,
with each closed loop in Fig. 1(a) being regarded as
in isolated resonance. In this approximation, the Gram
points occur as before for sin@ = 0, while the zeros of
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FIG. 5. The Argand diagrams of the Riemann ¢ function
for the wider range of ¢ values, from t = 9—500. (a) ¢(1/2+it),
and (b) ¢(1 + it).
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¢(1/2 + it) are given by the condition

cosf@ =0, 0=(m+1/2)r, m=1,2,.... 9)

This condition for the location of the zeros was also ob-
tained by Berry [7] from the first term in his approximate
formula. Equation (8) has roots that yield the zeros on
the 1/2 axis with an error of at most 3%.

IV. THE INVERTED HARMONIC OSCILLATOR

As mentioned earlier, for 0 = 1, the phase 0(t) is inti-
mately connected to the quantum scattering of a particle
on a saddlelike surface. On the o = 1/2 line, our anal-
ogy with the scattering amplitude also suggests that the
phase angle 6(t) is related to a scattering phase shift. We
now demonstrate that the scattering of a nonrelativistic
particle by an inverted harmonic oscillator with a hard
wall at the origin generates a phase shift that is closely re-
lated to 0(t). Indeed, we show that the quantum density
of states for this problem is essentially the same as Eq.
(5) for the density of the zeros. Consider the Schrédinger
equation for z > 0,

B2 d? 1 5,

and impose the boundary condition that the wave fu{lc-
tion ® vanishes at the origin. Putting 22 = y, & = y~1¢,
it becomes

d? (l+1) kt
—¢— - —¢+k*=0. 11
GEt gt TR (11)
In the above equation,
1 mw E
== "o T TR (12)

This is effectively a three-dimensional Schrédinger equa-
tion for a repulsive Coulomb potential in the variable y.
To obtain the phase shift, we write the asymptotic solu-
tion of the above equation [13] as

é(y) ~ sin (ky - %ln(2ky) - l_;r_ + 771) s (13)

where 7; is the phase shift with respect to the distorted
Coulomb wave, given by arg I'({ + 1 +4t/2). For our one-
dimensional problem, only ! = —1/4 is relevant. For this
case, omitting the subscript I/, the phase shift 7 is

3 it
n:arg[‘(z-i—%) . (14)

Using the identity [14]

V2

(3 +iy)T(5 —1y) coshmy + isinhy

(15)

The number of quantum states n(t), between 0 and ¢, is
then given by

n(t) = M

C 1 1 .t 1 .t
= % + —2—;1111 [IDF (Z +Z'2'> —lIlF(Z ——25)}.

In the above equation, C is a smooth function given by
Gl -1
C = 3~ tan™ " (cosechrnt). (17)

Note from above that the expression for 7(t) is not quite
identical to 6(t) as defined in Eq. (5). However, their
derivatives, the quantum density of states, only differ by
a constant and an exponentially small term. It should
also be pointed out that even if we had started with a
full inverted harmonic oscillator (rather than the half-
oscillator), the same conclusion would be reached, even
though there may arise some nonuniqueness in the choice
of the boundary condition. The inverted harmonic oscil-
lator problem was studied by a number of authors in
the past [15,16] in relation to time-delay, and by others
[17-20] in connection to string theory. No connection,
however, was made to the phase of {(1/2 + t).

V. SUMMARY

In summary, we recapitulate the main points made in
this paper. Traditionally, the behavior of the zeros of the
Riemann ¢ function on the 1/2 axis is associated with the
bound state problem of a quantum Hamiltonian. We, on
the other hand, focus on the scattering problem. We
use the Argand diagram construction for the Riemann (
function to visualize how the smooth phase 6(t) acts as a
counter for the zeros of Z(t). Off the 1/2 axis, the zigzag
pattern of the phase shift as a function of ¢ transforms to
smooth undulations which still retain the memory of the
zeros. This memory fades, however, as the distance from
the 1/2 axis increases. We also note from the Argand
diagrams of the { function its analogy with the scattering
amplitude, and the approximate condition [Eq. (9)] for
the location of the zeros. The smooth part of the phase
angle of the ¢ function on the o = 1/2 line is related to
the quantum phase shift of a potential. It is perhaps not
surprising that this potential that generates the smooth
phase is as simple as the inverted harmonic oscillator.
The chaotic jumps in the phase, shown in Fig. 2(b),
have been left out from this. It is known that for the
chaotic phase at & = 1 [9-11], the motion of the particle
is on the surface of a saddle. The orbits in this case
are all unstable. It is as if the smooth phase on the 1/2
line still remembered a section of the saddle, i.e., the
inverted oscillator. Finally, we suggest that the Argand
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diagram construction may also be useful for the Selberg
¢ function, and shed light on the quantization condition
for quantum chaos [8]. This last point is under current
investigation.
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